MIT Unit Affiliation:
Lab Affiliation(s):
Rohsenow Kendall Heat and Mass Transfer Laboratory
Post Doc Sponsor / Advisor:
Professor John H. Lienhard V
Areas of Expertise:
  • Heat and Mass Transfer
  • Chemical and Mechanical Engineering Thermodynamics
  • Desalination and Water Treatment
Date PhD Completed:
June, 2015
Expected End Date of Post Doctoral Position:
December 31, 2016

Gregory Thiel

  • Post Doctoral

MIT Unit Affiliation: 

  • Mechanical Engineering

Lab Affiliation(s): 

Rohsenow Kendall Heat and Mass Transfer Laboratory

Post Doc Sponsor / Advisor: 

Professor John H. Lienhard V

Date PhD Completed: 

Jun, 2015

Top 3 Areas of Expertise: 

Heat and Mass Transfer
Chemical and Mechanical Engineering Thermodynamics
Desalination and Water Treatment

Expected End Date of Post Doctoral Position: 

December 31, 2016

Thesis Title: 

Desalination Systems for the Treatment of Hypersaline Produced Water from Unconventional Oil and Gas Processes

Thesis Abstract: 

A combination of advances in drilling technology and the depletion of domestic conventional reserves has led to a boom in the use of hydraulic fracturing to recover oil and gas in North America. Among the most significant challenges associated with hydraulic fracturing is water resource management, as large quantities of water are both consumed and produced by the process. The management of produced water, the stream of water associated with a producing well, is particularly challenging as it can be hypersaline, with salinities as high as nine times seawater. Typical disposal strategies for produced water, such as deep well injection, can be unfeasible in many unconventional resource settings as a result of regulatory, environmental, and/or economic barriers. Consequently, on-site treatment and reuse—a part of which is desalination—has emerged as a strategy in many unconventional formations. However, although desalination systems are well understood in oceanographic and brackish groundwater contexts, their performance and design at significantly higher salinities is less well explored. 

In this thesis, this gap is addressed from the perspective of two major themes: energy consumption and scale formation, as these can be two of the most significant costs associated with operating high-salinity produced water desalination systems. Samples of produced water were obtained from three major formations, the Marcellus in Pennsylvania, the Permian in Texas, and the Maritimes in Nova Scotia, and abstracted to design-case samples for each location. A thermodynamic framework for analyzing high salinity desalination systems was developed, and traditional and emerging desalination technologies were modeled to assess the energetic performance of treating these high-salinity waters. A novel thermodynamic parameter, known as the equipartition factor, was developed and applied to several high-salinity desalination systems to understand the limits of energy efficiency under reasonable economic constraints. For emerging systems, novel hybridizations were analyzed which show the potential for improved performance. A model for predicting scale formation was developed and used to benchmark current pretreatment practices. An improved pretreatment process was proposed that has the potential to cut chemical costs significantly. Ultimately, the results of the thesis show that traditional seawater desalination rules of thumb do not apply: minimum and actual energy requirements of hypersaline desalination systems exceed their seawater counterparts by an order of magnitude, evaporative desalination systems are more efficient at high salinities than lower salinities, the scale-defined operating envelope can differ from formation to formation, and optimized, targeted pretreatment strategies have the potential to greatly reduce the cost of treatment. It is hoped that the results of this thesis will better inform future high-salinity desalination system development as well as current industrial practice.

Top 5 Awards and honors (name of award, date received): 

Shapiro Teaching Fellow, 2016 (MIT)
MIT Martin Family Fellow for Sustainability, 2012 (MIT)
Eni-MIT Energy Initiative Fellowship, 2010 (MIT)
The Gustav Kuerti Award, 2010 (CWRU)
The Robert and Leona Garwin Award, 2009 (CWRU)

5 Recent Papers: 

Thiel, G. P. and Lienhard V, J. H. (2016), “An effectiveness–number of transfer units relationship for evaporators with non-negligible boiling point elevation increases”, Journal of Heat Transfer, 138(12), 121801–121801-8.

Rohlfs, W., Thiel, G. P., and Lienhard V, J. H. (2016), “Modeling reverse osmosis element design using superposition and an analogy to convective heat transfer”, Journal of Membrane Science, 512, 38–49.

Thiel, G. P. (2015), “Salty solutions,” Physics Today, 68(6), 66.

Thiel, G. P., Tow, E. W., Banchik, L. D., Chung, H. W., Lienhard V, J. H. (2015), “Energy consumption in desalinating produced water from shale oil and gas extraction,” Desalination, 366, 94–112.

Contact Information: