MIT Unit Affiliation:
Lab Affiliation(s):
Edelman Lab
Post Doc Sponsor / Advisor:
Elazer R. Edelman
Areas of Expertise:
  • Finite Element Analysis
  • Endovascular Stent Mechanics
  • Atherosclerotic Disease
Date PhD Completed:
March, 2013
Expected End Date of Post Doctoral Position:
December 31, 2016

Claire Conway

  • Post Doctoral

MIT Unit Affiliation: 

  • Health Sciences and Technology

Lab Affiliation(s): 

Edelman Lab

Post Doc Sponsor / Advisor: 

Elazer R. Edelman

Date PhD Completed: 

Mar, 2013

Top 3 Areas of Expertise: 

Finite Element Analysis
Endovascular Stent Mechanics
Atherosclerotic Disease

Personal Statement: 

I am currently a Postdoctoral Fellow at the Massachusetts Institute of Technology in the Edelman Laboratory with a fellowship from Oak Ridge Institute for Science and Education (ORISE) through an appointment to Research Participation Program at the U.S. Food and Drug Administration (FDA).

My scientific interests include (i) mechanical behavior of intravascular stents, both at implantation and in the long-term, (ii) in silico analysis of stents and atherosclerotic tissue and (iii) in vitro and in vivo assessment of stent fracture.

Expected End Date of Post Doctoral Position: 

December 31, 2016

CV: 

Research Projects: 

ORISE – FDA Project: Understand and the mechanisms of consequential stent fracture through in silico, in vitro and in vivo methods

Virtual Angioplasty: Predict patient specific response to coronary stenting through VH-IVUS derived vessels subjected to virtual stent deployment

Living Heart Project: Predict the virtual dynamics of a whole heart model in different disease states 

Thesis Title: 

The Development of a Computational Test- Bed to Assess Coronary Stent Implantation

Thesis Abstract: 

The implantation behaviour of coronary stents is of great interest to clinicians and engineers  alike  as  in-stent  restenosis  (ISR)  remains  a  critical  issue  with  the community. ISR is hypothesized to occur for reasons that include injury to the vessel wall caused by stent placement.  To  reduce  the  incidence  of  ISR,  improved  design and  testing  of  coronary  stents  is  needed.  This  research  aims  to  facilitate  more comprehensive evaluation of stents in the design phase, by generating more realistic arterial  environments  and  corresponding  stress  states  than  have  been  considered heretofore,  as  a  step  towards  reducing  the  prevalence  of  ISR.  Furthermore, it proposes improvements to the current requirements for coronary stent computational stress analyses as set out by the Food and Drug Administration (FDA).

A systematic geometric test-bed with varying levels of arterial curvature and stenosis severity is developed and used to evaluate the implantation behaviour of two stent designs using finite element analysis. A parameter study on atherosclerotic tissue behaviour is also carried out. Results are analysed using tissue damage estimates and lumen gain comparisons for each design. Results indicate that stent design does not have  a  major  impact  on  lumen  gain  behaviour  but  may  have  an  influence  on  the potential for tissue damage. The level of stenosis in the arterial segments is seen to have a strong impact on the results while the effects of arterial curvature appear to be design dependent.

The  greatest  variable  in  any  stenting  analysis  is  the  representation  of  the atherosclerotic  tissue  and  this  was  the  focus  of  the  second  phase  of  work.  This research explores the direct stenting technique versus the predilation technique, the effects  of  variation  of  the  material  model  for  the  atherosclerotic  tissue  matrix,  the effects  of  inclusion  of  calcifications  and  a  lipid  pool  and  finally  the  effects  of inclusion  of  the  Mullins  effect  on  the  atherosclerotic  tissue  matrix  in  stenting applications. One major finding is that the stiffness of the base elasticity model and the strength of the tissue are key parameters in these analyses.

In  conclusion,  the  use  of  finite  element  modeling  in  this  thesis  to  assess  the biomechanics of coronary stent implantation has yielded the development of a novel computational  test-bed.  This  work  has  generated  considerable  new  insight  into  the mechanics  of  coronary  stenting,  and  has  created  the  basis  for  more  effective  and efficient stent design in the future.

Top 5 Awards and honors (name of award, date received): 

FDA Honors Award, Jun 2016
ORISE Postdoctoral Fellowship, April 2013
Bioengineering in Ireland, Best New Research, Jan 2008
Frederic Barnes Waldron Best Student Prize, Oct 2007
Embark Scholarship, Oct 2007
Contact Information:
45 Carleton St.
E25-442
Cambridge
Massachusetts
02142
6172588893